
Techsmiths Javascript Pre-Reading

•
•

•
•
•

•

•
•

•

•
•
•

•

•
•
•

•

•
•
•

•

•
•
•

•

•
•

•
•

•

•

•

•

•

•

•

Table of Contents

Table of Contents
Introduction to JavaScript

Learning goals
Before you start
Reading material

Your First JavaScript Program

Reading material
Exercise

Data Types and Variables

Reading material
Exercise
Sample solution

Branching

Reading material
Exercise
Sample solution

For Loops and Arrays

Reading material
Exercise
Sample solution

Functions and While Loops

Reading material
Exercise
Sample solution

Strings and Objects

Reading material
Exercises

Part 1
Part 2

1

•
•

•
•
•
•
•

•
•
•
•
•

Sample solution
Appendix A: Working with command prompt

What is a command prompt/terminal?
How do I use a command prompt?
The Working Directory
Other useful commands
You’re Ready!

1. Introduction to JavaScript

This pre-reading is designed to teach you the basics of JavaScript programming.
You should be able to follow it even if you've done little or no programming before.
The goal is to equip you with enough JavaScript knowledge for the interviews, and
allow you to hit the ground running in the bootcamp.

If you do have some prior programming experience, read on - there are some bits
you can skip over, but don't move too fast as there could be something you're not so
familiar with that's worth revising! Make sure you complete all the exercises that we
suggest, and if you find anything tricky then treat that as a prompt to revisit the
reading material we suggest in more detail.

Learning goals

The objective of this pre-reading is to be able to understand and use the following
JavaScript programming concepts:

Variables and assignment
Conditional logic - the if statement
Looping logic - the for and while statements
Arrays and objects
Functions

Anything beyond this starting point is good! But the above represents the minimum
you need to know in order to be able to effectively tackle the entrance interviews.

2

•
•

Before you start
In order to complete this course you will need a copy of Node.js - this will allow you
to run the code you write on your own machine and see it working. Download and
install the version marked "Current" from https://nodejs.org/en/.

You will then need a development environment. We recommend VS Code, which
you can download from https://code.visualstudio.com/.

Reading material

The recommended route to learning the necessary JavaScript is to work through
the relevant sections of Mozilla's JavaScript Guide , but don't just sit down and
read the guide cover-to-cover. You'll probably get bored! Instead, work through the
topics in this pre-reading and we will:

Suggest appropriate sections to read
Provide some exercises that you should use to practice what you learn

You will almost certainly find it helpful, between reading a section of the guide
and doing the exercises, to copy some of the code samples from the guide and run
them. Change the code slightly, and run them again, then see if the result is what
you expected. Doing this every time you meet a new concept will help you to pick it
up more quickly and understand it in more depth.

If you do already have prior experience then you're welcome to skim over any of the
reading material that you're already confident in. But make sure you're proud of the
code you're writing, and if you're not completely confident then re-read the
material even if it's largely familiar.

1

3

4

•

•

•

•

•

•
•

2. Your First JavaScript Program

This topic sees you write your first JavaScript program.

Reading material

Read through the first section ("Introduction") of The JavaScript Guide to gain
some background knowledge about JavaScript in general. Stop before the section
called "Getting started with JavaScript", as during this course you will write and run
pieces of code differently to the method described there. Don't worry about
meeting any of the prerequisites mentioned in that guide - you will be able to follow
this pre-reading even without any prior knowledge.

Exercise

As we progress through this module, we're going to build a (very simple!) Calculator
application. It will be a console (command line) application - entirely text based.
Here's how to get started:

Firstly, if you are unfamiliar with using the command prompt, please read
Appendix A: Working with Command Prompt before continuing.
Create a directory that you will keep your Calculator application in. Call it
something sensible, like "Calculator".
Open up a command prompt and navigate to your calculator directory (e.g. cd
C:\Work\Training\Calculator)
Run npm init to create a new Node.js project. Use the default answer to every
question it asks you (just press "Enter") - don't worry if you don't understand
what all the questions mean!

If it doesn't do anything after the final question "Is this ok?", double-check
there's a file in the folder called package.json . If it's there, everything went
smoothly and you can exit the npm init process by typing in the console
Ctrl + C .

In VS Code, open your new directory via File > Open folder...
Create a file where you will write your code via File > New file . Call the file

2

5

•
•

•

•

"index.js" - this is the conventional name to give to the entry point of a
JavaScript program.
Write the following code in "index.js"

console.log('Welcome to the calculator!');
Run the program: in the command prompt from earlier, still in the directory for
your application, run node index.js
Check that the output is what you expect it to be. Have a go at changing the
message that is displayed, and re-run the program to see if it worked.

6

•
•
•
•
•

•
•
•

•
•
•

3. Data Types and Variables

This topic introduces data types, variables and assignment. We'll make some small
extensions to your Calculator project.

Reading material

Read through the sections "Grammar and types" of the JavaScript Guide . Then
read the "Assignment", "Comparisons" and "Arithmetic operators" section of
"Expressions and Operators" . After reading these sections, you should have
learned:

How to declare a variable
The difference between var , let and const
How to assign a value to a variable
The difference between numbers and strings in JavaScript
How to perform common operations on numbers and strings in JavaScript

Exercise

Add the following functionality to your Calculator project:

Prompt the user to enter one number
Prompt the user to enter a second number
Multiply the two numbers together and print out the result

You should be able to do most of this using information contained in the guide.
However you'll need a way to prompt the user for some input. Node.js doesn't
provide a way to do this easily, but we can install a library called readline-sync
that provides this functionality to our project.

Open a command prompt and navigate to your project directory.
Run npm install --save readline-sync
At the top of index.js, add the following line of code: const readline =

3

4

7

•

•

require(‘readline-sync’);

This downloads the library to your project directory, and tells Node.js that you want
to load this library in your application so that you can use its functionality. It also
writes some metadata to files called package.json and package-lock.json so
that people who work on your application with you will get the same version of the
library as you.

Now you can get input from the user in the following fashion:

console.log('Please enter some input:');
const response = readline.prompt();

Note that readline.prompt() returns the response as a string, so you'll need to
make sure to convert the responses to numbers before multiplying them together!

Sample solution

We've put together a sample solution, that evolves as you move through the topics
in this pre-reading. Here's how to use it:

If you get stuck, it's there to help. But don't look until you've tried your best to
solve the challenge yourself - you'll learn much more if you build your own code.
If you do need to look at the solution, try to learn from it and then apply that
knowledge in your own way, rather than just copying what we've provided.
Once you've finished the exercise, then take a look at the sample solution. How
does it compare to yours? Remember that it is only an example - it's not
necessarily any more "correct" than yours. But it might approach some
particular problem in a different way. Think about what's "better" and "worse"
than yours. And indeed, what's just "different"?

Here's our solution to this particular exercise on GitHub:

https://github.com/techsmithsuk/calculator-
js/blob/DataTypesAndVariables/index.js

8

•
•
•

4. Branching

This topic introduces branching and conditional logic, via the if and switch
statements. We also understand a bit more about the syntax of JavaScript.

Reading material

Read the subsections called if...else and switch in the section "Control flow and
error handling" of the JavaScript Guide . You can stop before getting to the section
on exception handling - we'll cover that later on in the course.

These two statements will allow you to write code that behaves differently
depending on certain conditions. You may also want to review the "Assignment"
and "Comparison" sections of "Expressions and operators". After reading these
sections, you should know:

How to write code which uses the if and else statements
How to write code using the switch statement
The difference between x = y and x == y

Exercise

Let's enhance your Calculator a little further. We want to support more operations
than just multiplication. We'll do this by prompting the user to enter an operator
before they enter the numbers. So a typical program run might look like this:

Welcome to the calculator!
==========================
Please enter the operator: +
Please enter the first number: 10
Please enter the second number: 4
The answer is: 14

To keep things simple, we'll just use four operators:

5

9

•
•
•
•

+ - addition
- - subtraction
* - multiplication
/ - division You can do this exercise with either if...else statements or a
switch statement. Why not try both, and see what the difference in
implementation looks like?

Sample solution

One possible solution is here:

https://github.com/techsmithsuk/calculator-js/blob/Branching/index.js

Remember not to look until you've pushed your own code, unless you're really
stuck! And bear in mind that there are many possible solutions - this one isn't
necessarily any better than yours.

10

•
•
•
•

5. For Loops and Arrays

This topic introduces for loops and arrays. We'll obviously add some more
functionality to the calculator app too!

Reading material

Read the "Indexed collections" section of the JavaScript Guide . You can stop
before reading about "Typed Arrays".

Then read the "Loops and iteration" section. You can skip over the while and the
do...while loops for now, but we'll come back to them in the next lesson.

After reading these materials, you should know:

How to create an array
How to set the values in an array
How to access elements from arrays
How to write code that will run repeatedly inside a for loop.

Exercise

So far our calculator only performs operations on two numbers. Let's enhance it so
it can do calculations on any number of numbers! For example:

3 + 4 + 5 = 12
1 * 2 * 3 = 6
12 / 2 / 2 = 3

Let's keep things simple by using the same operator each time. So a typical output
might look like this (for the first sum above):

Welcome to the calculator!

6

11

==========================
Please enter the operator: +
How many numbers do you want to +? 3
Please enter number 1: 3
Please enter number 2: 4
Please enter number 3: 5
The answer is: 12

You may find you need two for -loops - one to read the numbers and put them into
an array, and a second one to go through and add them all up.

See what you can come up with, and push the result. Once you're done, take a look
at the example solution below - it's not necessarily any more "correct" than yours,
but it might be different; what do you think the most important differences are?

Sample solution

Here's one possible solution:

https://github.com/techsmithsuk/calculator-js/blob/ForLoopsAndArrays/index.js

Remember not to look until you've finished your own code, unless you're really
stuck!

12

•
•
•
•
•

6. Functions and While Loops

This topic introduces the syntax for creating and calling functions, the basic
building blocks of reusable (and understandable!) code. We'll also look at the
while loop, and add some of our understanding to the calculator tool we've been
building.

Reading material

Read the "Functions" section of the JavaScript Guide . You don't need to read the
section about "Arrow functions", but you may find it interesting to do so if you are
already familiar with the ordinary function syntax in JavaScript.

Also read about while and do...while loops in the "Loops and iteration" section.

These materials will teach you about:

How to define your own functions
How to call functions you have defined
How to return values from functions
How to use function parameters and arguments
How to write code that will run repeatedly inside a while or do...while loop.

Exercise

One of our goals as programmers should be to write "clean code" - that is, code that
is simple and understandable. Take a look at this piece of code:

printWelcomeMessage();
performOneCalculation();

7

13

•

•

It's hopefully fairly obvious what this code is trying to do, even if you don't know the
details of how those functions work. Refactor your code so it looks the same as
this example - that will involve splitting your existing code into two new functions,
and then having your program just call them both in turn.

"Refactoring" is the process of improving your code without changing its
behaviour. Those improvements might be to make it more readable, to make it
easier to change and extend in future, or something else entirely.

Now take it a step further. I'm guessing you have at least a couple of pieces of code
of the form:

console.log('Please enter a number:');
const response = readline.prompt();
const number = +response;

Create a function that encapsulates this pattern, and use it to replace all the
code that's similar to the above. The same function should be usable every time
you want to print out a message, and interpret the response as a number.

Now see how many further improvements you can make to the readability of your
code by splitting it off into smaller, well named functions.

Having done all that, it should be relatively easy to add in a couple of new features,
using while loops:

Make your calculator keep running - once it's calculated an answer, it should
just loop round and start again. Presumably you don't want to keep printing the
welcome message every time though (So that you don't get stuck running your
program forever, you should know that you can force it to stop by pressing Ctrl
+ C in the console while it is running).
Force the user to enter valid numbers - when prompting for a number, it's
annoying if your program stops working correctly if the user types in a string
instead. Have it just ask again in this case.

For the second bullet you might find the isNaN() function useful. You can read
about it here , and use it like this:

const maybeNumber = +"42";

8

14

if (isNaN(maybeNumber)) {
 // It didn't work - we have NaN.
} else {
 // It worked - we have a number.
}

Sample solution

Don't worry! This exercise is a step up from the previous ones. You should do your
best to produce something that works on your own, but if you get stuck here's one
possible solution:

https://github.com/techsmithsuk/calculator-
js/blob/FunctionsAndWhileLoops/index.js

There are many ways to tackle this problem though - if you do resort to looking at
this model answer before you've finished your own solution, see if you can improve
upon it and come up with something even better!

And as usual, if you do manage to complete the exercise by yourself, take a look at
the sample solution afterwards and compare and contrast. As we build more
interesting functionality, the range of possible ways you could implement the code
will grow, and it becomes increasingly worthwhile thinking about the pros and cons
of different alternatives. Which approach produces the shortest code? How about
the most self-explanatory code? Which is "better"?

15

•

•
•

7. Strings and Objects

This topic looks in more detail at strings in JavaScript, and a new data type which is
extremely important in JavaScript - objects.

Reading material

Read the sections "Text formatting" and "Working with objects" of the
[JavaScript Guide]. After reading these sections, you should know about:

Template literals and string interpolation - e.g. Template with
${expression}
How to create objects using object initializers or constructors
How to access and set properties of an object

Exercises

Part 1
Review how your calculator deals with outputting strings at the moment. Can you
use string interpolation to improve your code? Perhaps try adding some more
informative text now that it's easier to print out more complex messages.

Part 2
We'd like to enhance the calculator by adding a calculation mode for working with
strings. Specifically, we'll add support for counting the number of times each vowel
appears in a given string. Working with strings doesn't really fit into the current
interface, so we'll modify our main program loop to look something like this:

const ARITHMETIC_MODE = '1';
const VOWEL_COUNTING_MODE = '2';

printWelcomeMessage();
while (true) {
 const calculationMode = getCalculationMode();

9 10

16

 if (calculationMode === ARITHMETIC_MODE) {
 performOneArithmeticCalculation();
 } else if (calculationMode === VOWEL_COUNTING_MODE) {
 performOneVowelCountingCalculation();
 }
}

And the output might look something like this:

Welcome to the calculator!
==========================
Which calculator mode do you want?
 1) Arithmetic
 2) Vowel counting
> 2

Please enter a string:
> ThE QuIcK BrOwN FoX JuMpS OvEr ThE LaZy DoG

The vowel counts are:
 A: 1
 E: 3
 I: 1
 O: 4
 U: 2

Which calculator mode do you want?
 1) Arithmetic
 2) Vowel counting
>

Implement some functionality along these lines - pay attention to how the example
treats uppercase and lowercase vowels the same. Since we've just learned about
objects, you should use an object to hold the answer when doing the vowel
counting calculation.

17

Sample solution

Here's one possible solution:

https://github.com/techsmithsuk/calculator-js/blob/StringsAndObjects/index.js

Try to build your own solution before peeking!

18

19

Appendix A: Working with command prompt

This appendix will introduce you to the concept of a command prompt/terminal if
you are currently unfamiliar with them, or have not used one before.

What is a command prompt/terminal?

Developers often use a program called “command prompt” (on Windows),
“terminal” (on Mac/Unix), or something similar in order to accomplish file
management tasks.

Most of the file management tasks you have had to perform on a computer so far
have been achievable using “Windows Explorer” (on Windows) or “Finder” (on
Mac), where you have been able to open files/folders by double-clicking on them,
or moving files by dragging them, or deleting them by selecting them then pressing
the Delete key.

For the most part, a command prompt is simply a window in which you can type file
management commands, and the commands will be executed. You can type
commands to run applications, create files, delete files, edit files, and more.

How do I use a command prompt?

Let’s try opening up a command prompt. It is a program already installed on your
system, so if you are using Windows 10, you can find it by pressing the Windows
key, then (before you click anywhere or type anything else) type in the words
“command prompt”. You should see the words appear in the Start Menu as
Windows searches for the program. You should see an entry saying “Command
Prompt” as the first search result - click it, or press Enter , and the program will
open. It will look like a black window with some text in it. In all likelihood, the text
will read something like:

Microsoft Windows [Version 10.0.18362.30]
(c) 2019 Microsoft Corporation. All rights reserved.

20

C:\Users\YourName>

If you see the above, you have successfully opened a command prompt - if you type
a command and press Enter , your command will be interpreted and executed.

The reason why we are now learning to use a command prompt is that as
developers, we need to perform new tasks that are currently not achievable by
clicking around in Windows Explorer or Finder. Specifically, by using a command
prompt, we can pass “arguments” (or you could call them “parameters”) into
programs as additional information when opening them.

For example, if you wanted to run “Notepad” from Windows Explorer, you could
click on its icon in the Start Menu, and it would open. However, in a command
prompt window, you can type the word notepad and press Enter , and the
notepad window will open. If you did this, your command prompt window would
now look like this:

Microsoft Windows [Version 10.0.18362.30]
(c) 2019 Microsoft Corporation. All rights reserved.

C:\Users\YourName>notepad

C:\Users\YourName>

Although it seems at first that the command prompt way of doing this is harder,
there are a few advantages. For example, if you wanted to open a specific text file in
Notepad, you can do so easily in Command Prompt by passing the name of the file
as an argument to Notepad. By typing the command notepad myFile.txt ,
Notepad will open, having already opened the file myFile.txt .

This will become more important when you are working with tools like Node.js
which need to be operated on using the command line. If you have a script called
myScript.js you will need to run it in the command line by typing node
myScript.js .

21

•
•

•

•
•
•

•

The Working Directory

You may have noticed that the command prompt tells you what path you are
currently operating in. Specifically, C:\Users\YourName> means that this
command prompt window is currently operating inside the YourName directory,
which is located inside the Users directory, which is itself located on your C:
drive. If you store your project files somewhere else, e.g. your Dropbox folder,
which might be located in your user directory, then you can use the cd command to
change the working directory to it. So, it would look like this:

Microsoft Windows [Version 10.0.18362.30]
(c) 2019 Microsoft Corporation. All rights reserved.

C:\Users\YourName>cd Dropbox

C:\Users\YourName\Dropbox>

The cd command can be used in a few different ways:

cd DirectoryName will open DirectoryName inside your current directory.
cd C:\Users\YourName\SomeFolder\SomeOtherFolder will open that path,
regardless of where you are at the moment (contrast this with the above
command, which is sensitive to your current location)
cd .. is a special command that will go up one folder (i.e. it will take you from
C:\Users\YourName to C:\Users\)

By the way, cd stands for “Change Directory”.

Other useful commands

If you want to experiment more with command prompt, here are a few more
commands that might come in useful:

dir lists all the files in your current directory
md DirectoryName creates a new directory inside your current one
tree shows you the folder structure under your current directory - this can get
quite large if you run it in a near to-level directory
del fileName.txt deletes a file - be careful with this

22

•

•

del fileName.txt deletes a file - be careful with this
copy file1.txt file2.txt duplicates an existing file1.txt , calling the
new file file2.txt

There are also move and rename commands, and much more - have a search
on the internet if you are curious, but remember that the command prompt is a
very powerful tool so do not run any command that you do not fully
understand - the risks of doing so include accidentally deleting files you did not
intend to, or being tricked by someone on the internet into running something
malicious.

23

24

You’re Ready!

Now that you have completed this pre-reading you can go on to take the online
coding and aptitude tests by following the link in the email you were sent.

IMPORTANT: Remember to select JavaScript as the language you would like to
take the test in (the default language is C). You will need to do this for each test you
take.

Please get in touch if you have any problems with the above via info@techsmiths.uk

Good luck!

Techsmiths Team

1. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
2. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction
3. https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Guide/Grammar_and_types
4. https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Guide/Expressions_and_Operators
5. https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Guide/Control_flow_and_error_handling#if...else_stat
ement

6. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Guide/Indexed_collections

7. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions
8. https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/isNaN
9. https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Guide/Text_formatting
10. https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Guide/Working_with_Objects

25

